Lokale Änderungsrate berechnen - Anleitung

Die lokale Änderungsrate wird auch als momentane Änderungsrate bezeichnet und ist eine Größe aus der Mathematik. Der Mathematische Ausdruck beschreibt den Differentialquotienten. Die lokale Änderungsrate ermöglicht die Bestimmung der Steigung an einem definierten Punkt in einer Funktion. Je nach Darstellung und Aufgabe kann die lokale Änderungsrate genutzt werden, um die Beschleunigung von Autos, Zügen oder anderen motorisierten Fahrzeugen zu bestimmen.

Die lokale Änderungsrate wird auch als momentane Änderungsrate bezeichnet und ist eine Größe aus der Mathematik. Der Mathematische Ausdruck beschreibt den Differentialquotienten. Die lokale Änderungsrate ermöglicht die Bestimmung der Steigung an einem definierten Punkt in einer Funktion. Je nach Darstellung und Aufgabe kann die lokale Änderungsrate genutzt werden, um die Beschleunigung von Autos, Zügen oder anderen motorisierten Fahrzeugen zu bestimmen.

Wo wird die Berechnung der lokalen Änderungsrate eingesetzt?

Die lokale Änderungsrate ist in der Mechanik und Kinematik als momentane Änderungsrate bekannt. Dort wird die lokale Änderungsrate genutzt, um die Beschleunigung zu bestimmen. In der Mechanik und Kinetik ist die momentane Änderungsrate also eine physikalische Größe. Die Beschleunigung ist dabei die lokale zeitliche Änderungsrate der Geschwindigkeit.

Gibt es einen Unterschied zwischen lokaler und momentaner Änderungsrate?

Wenn eine zeitabhängige Funktion abgebildet ist (graphische Abbildung), dann kann die lokale Änderungsrate als momentane Änderungsrate bezeichnet werden. Der Begriff momentane Änderungsrate wird vor allem in der Kinetik und Mechanik als physikalische, gerichtete (vektorielle) Größe benutzt.

Wie wird die lokale Änderungsrate bestimmt?

Während die momentane zeitliche Änderungsrate der Geschwindigkeit als physikalische Größe verstanden werden kann, die in Mechanik und Kinetik benutzt wird, ist die lokale Änderungsrate eine mathematische Größe.

Die lokale Änderungsrate kann in der Mathematik relativ einfach berechnet und sogar bei graphischen Darstellungen abgelesen werden. Eine Funktion hat eine bestimmte Steigung. Die Steigung der Funktion in einem definierten Punkt entspricht der Steigung der Tangente, die diesen Punkt schneidet. Die lokale Änderungsrate kann über eine Funktionsableitung bestimmt werden.

Die lokale Änderungsrate kann über die Funktion y = m*x + b abgelesen werden. Die lokale Änderungsrate eines bestimmten Punktes einer Funktion, entspricht der Steigung einer Tangente, die diesen Punkt schneidet. In der oben angegebenen Funktionsgleichung entspricht m der Steigung.

Berechnung der lokalen Änderungsrate einer komplexen Funktion

Wenn die lokale Änderungsrate einer komplexen Funktion bestimmt werden soll, dann liest sich das zunächst schwerer als es wirklich ist. Die Funktion f(x) kann einfach abgeleitet werden. Die Ableitung kann über Ketten-, Summen-, Quotienten- oder Produktregel erfolgen, je nach Ausgangsaufgabe. Sie haben die Ableitung f'(x) gebildet?

Dann können Sie ganz bequem den x-Wert in die Ableitung einsetzen. Gemeint ist der x-Wert des zu bestimmenden Punktes. Der so ermittelte y-Wert der Funktionsableitung entspricht der Grafensteigung des zu bestimmenden Punktes und ist mit der lokalen Änderungsrate gleichzusetzen. Das die lokale Änderungsrate gesucht wird, wird in Mathematikaufgaben nicht immer eindeutig angegeben. Häufig wird die Beschleunigung oder die Geschwindigkeit zu einem in der Aufgabe definierten Zeitpunkt gesucht.

Wenn beispielsweise in der Aufgabe eine x-Achse vorhanden ist, auf der die Zeit angegeben wird (Jahre, etc.) und für die y-Achse Meter (Einheit m) angegeben werden, dann kann auch nach der Wachstumsgeschwindigkeit gesucht werden. Diese ist ebenfalls als lokale Änderungsrate zu verstehen und wird in m (Meter) pro Zeiteinheit (Jahr) gemessen.

Häufig wird in Textaufgaben auch die Beschleunigung eines Autos auf einer definierten Strecke gesucht. Die Einheit der Geschwindigkeit ist auf der y-Achse in km/h wiedergegeben. Die x-Achse zeigt die Zeit an (Stunden). Bei solchen Aufgaben wird die Beschleunigung (lokale Änderungsrate) zu einem definierten Zeitpunkt gesucht.

Hat dir der Beitrag gefallen?

HINTERLASSEN SIE EINE ANTWORT

Please enter your comment!
Please enter your name here